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Summary

We consider some multiple comparison problems in repeated measures designs for data with ties, parti-
cularly ordinal data; the methods are also applicable to continuous data, with or without ties. A unified
asymptotic theory of rank tests of Brunner, Puri and Sen (1995) and Akritas and Brunner (1997) is
utilized to derive large sample multiple comparison procedures (MCP’s).
First, we consider a single treatment and address the problem of comparing its time effects with respect
to the baseline. Multiple sign tests and rank tests (and the corresponding simultaneous confidence
intervals) are derived for this problem. Next, we consider two treatments and address the problem of
testing for treatment� time interactions by comparing their time effects with respect to the baseline.
Simulation studies are conducted to study the type I familywise error rates and powers of competing
procedures under different distributional models. The data from a psychiatric study are analyzed using
the above MCP’s to answer the clinicians’ questions.

Key words: Rank statistics; Sign statistics; Midranks; Rank transform tests; Ordi-
nal data; Joint ranking; Familywise error rate; Power.

1. Introduction

This work was motivated by the research questions addressed in a randomized
parallel group trial conducted at the Department of Psychiatry, University of Göt-
tingen to compare a new drug versus a placebo to cure panic disorder in psychia-
tric patients. A total of 30 patients were randomly assigned to the two treatment
groups with 15 per group. Patients were assessed at the baseline and then were
monitored on seven occasions over a period of 10 weeks. One of the efficacy
variables was the clinical global impression (CGI) measured on a seven-point ordi-
nal scale from 0 = best to 6 = worst. The data are shown in Table 1. Side-by-side
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box plots of the weekly data for the drug (solid circles) and placebo (open circles)
groups over the 10-week period are shown in Figure 1. We see that the trend is
flat in the placebo group, but is downward sloping in the drug group indicating
improvement.
The following questions of interest to the clinicians will be addressed in the

present paper:
1. What is the earliest time point at which the drug shows a significant im-

provement w.r.t. the baseline?
2. Is there a placebo effect as measured by a significant improvement w.r.t. the

baseline at any time point?
3. What is the earliest time point at which the drug shows a significantly higher

improvement than the placebo w.r.t. the baseline?
To formally answer these questions, not only does one need to deal with ordi-

nal data involving many ties, but also one needs to perform multiple compari-
sons over time points (in particular, comparisons with the baseline). Note that
rank transform statistics of exisiting parametric procedures (Conover and Iman,
1981) in general are not suitable to solve these problems (e.g. see Akritas,
1991). The goal of the present paper is to derive the necessary procedures. These
procedures will be of use to researchers in many disciplines, including medicine,
psychometry and marketing, where repeated measures designs with ordinal data
are common.
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Table 1

CGI Values of Panic Disorder Patients

Active Drug Group Placebo Group

Patient

Week

Patient

Week

0 1 2 3 4 6 8 10 0 1 2 3 4 6 8 10

1 4 5 5 4 3 1 1 1 1 5 5 5 4 3 5 5 5
2 5 5 4 3 2 1 1 1 2 5 4 5 5 5 5 6 5
3 4 3 3 1 1 2 1 2 3 4 4 3 3 4 4 5 5
4 4 3 2 1 0 1 1 2 4 5 5 5 5 4 5 4 5
5 5 4 4 3 2 2 2 2 5 4 4 4 4 3 3 3 2
6 5 5 5 5 5 3 3 2 6 5 5 4 4 4 4 4 4
7 6 6 5 6 4 5 5 3 7 3 3 3 2 3 1 1 1
8 4 4 4 3 3 2 2 1 8 4 4 4 4 4 4 4 4
9 4 4 4 3 4 4 2 1 9 3 3 4 4 3 1 2 2

10 5 2 2 2 4 4 2 2 10 4 4 4 4 5 4 4 4
11 4 5 4 3 2 2 1 2 11 5 4 5 4 4 4 5 5
12 5 5 5 4 4 3 2 1 12 4 4 4 4 4 3 4 4
13 5 5 5 2 1 4 1 1 13 3 3 3 2 1 4 4 5
14 5 4 4 3 2 2 1 1 14 5 5 5 4 4 5 4 5
15 5 5 2 2 2 3 1 2 15 4 4 4 4 4 4 4 3



There are many nonparametric multiple comparison procedures (MCP’s) for
continuous data. In particular, the multiple sign test of Steel (1959) and the multi-
ple signed rank test of Nemenyi (1963) discussed in Section 2.2, Chapter 9 of
Hochberg and Tamhane (1987) deal with dependent data, which is the focus of
the present paper. Nonparametric procedures for repeated measures designs with
continuous data have been studied by Thompson (1991), Akritas and Arnold

(1994) and Brunner and Denker (1994). In applications, measurement scales are
essentially discrete because of limited gage accuracy; hence ties are common. In
many applications, as in our example, an ordinal scale is used in which case ties
are a rule rather than an exception. The above procedures are not suitable in the
present context because of the prevalence of ties in ordinal data.
Most rank tests handle ties by assigning them midranks based on heuristic

grounds. The concept of normalized distribution functions due to Ruymgaart

(1980) leads to midranks in a natural way. Using this approach, a unified asymp-
totic theory of rank tests for continuous as well as discrete data has been devel-
oped by Brunner, Puri and Sun (1995) and Akritas and Brunner (1997).
Brunner and Langer (1999, 2000) applied the results to longitudinal data. We
utilize the results of these papers to derive large sample MCP’s to answer the
questions of interest. Some technical details are omitted for brevity; the interested
reader may refer to the aforementioned papers. More than two treatments are not
considered in this paper, so there are no multiple comparisons between treat-
ments.
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Fig. 1. A Plot of the Panic Disorder Data



The organization of the paper is as follows. Section 2 defines the notation and
basic assumptions. Section 3 considers the single treatment case (e.g., only the
placebo or only the drug group) where multiple comparisons stem from the need
to compare different time points with each other. We focus on the many-to-one
comparisons with the baseline to answer Questions 1 and 2 above. Multiple sign
and rank tests (and the associated simultaneous confidence intervals) are derived
for suitably defined effects. Section 4 considers two treatment groups. Multiple
rank tests are given for treatment� time interactions to answer Question 3 above.
Section 5 gives simulation results to study the type I error rates and powers of the
proposed tests. In Section 6 we return to the example and analyze the data in
Table 1 using the procedures proposed in earlier sections. Finally, a discussion of
the resulting methods is given in Section 7.

2. Notation and Assumptions

Consider a ¼ 1 or 2 treatments and bþ 1 � 2 repeated measures, which are as-
sumed to be observations at bþ 1 successive occasions, beginning with occasion
0, called the baseline. The subjects are assumed to be drawn as a random sample
from a homogeneous population. For a ¼ 2, an independent samples design is
assumed with subjects assigned at random to the treatments. Let Xijk denote the
observation at the jth occasion on the kth subject in the ith treatment group
ði ¼ 1; 2; j ¼ 0; 1; . . . ; b; k ¼ 1; 2; . . . ; niÞ. The Xijk are measured on at least ordi-
nal scale. For asymptotic considerations, we assume that n1; n2 ! 1 at the same
rate so that the ratio n1=n2 is bounded away from zero and 1.
The common distribution of Xik ¼ ðXi0k;Xi1k; . . . ;XibkÞ0 is assumed to be non-

degenerate, but otherwise completely arbitrary. In order to account for ties and
ordinal data, we define the marginal normalized cumulative distribution function
(c.d.f.) of Xijk as (Ruymgaart, 1980)

FijðxÞ ¼ 1
2 � ½F

þ
ij ðxÞ þ F�

ij ðxÞ� ; i ¼ 1; 2 ; j ¼ 0; 1; . . . ; b ;

where Fþ
ij ðxÞ is the right-continuous and F�

ij ðxÞ is the left-continuous version of
the original marginal c.d.f. of Xijk.
In Section 3 we consider a single treatment and drop the subscript i, letting

Xk ¼ ðX0k;X1k; . . . ;XbkÞ0 denote independent and identically distributed (i.i.d.) ob-
servation vectors on subjects k ¼ 1; 2; . . . ; n and FjðxÞ the corresponding normal-
ized c.d.f.’s.
The comparisons of interest are formulated as multiple hypothesis testing pro-

blems in each case. The type I familywise error rate (FWE) (Hochberg and
Tamhane, 1987) for a family of hypotheses is defined as

FWE ¼ PfAt least one true null hypothesis is rejectedg: ð2:1Þ

Biometrical Journal 44 (2002) 6 765



A requirement for a multiple test procedure is that the FWE be strongly con-
trolled, i.e., controlled under all possible configurations of the true hypotheses, at
a specified level a.

3. A Single Treatment

In this case, we focus on many-to-one comparisons between the occasions
j ¼ 1; . . . ; b with occasion 0, the baseline. The results can be readily extended to
other comparisons, e.g., pairwise comparisons between all occasions or compari-
sons between successive occasions.
We define the effect of occasion j w.r.t. the baseline as

qj ¼ PðX0k < XjkÞ þ 1
2 PðX0k ¼ XjkÞ � 1

2 ; j ¼ 1; . . . ; b: ð3:1Þ

Depending on whether qj >;¼ or < 0, we can say that Xjk is tendentiously larger,
comparable or smaller than X0k. In Section 3.1 we derive multiple sign tests on
the qj.
Although qj has a very simple interpretation, it only admits sign-type of tests.

To admit rank-type tests we propose an alternative definition of the effect of occa-
sion j ¼ 1; . . . ; b w.r.t. the baseline:

wj ¼ PðX0k < Xj‘Þ þ 1
2 PðX0k ¼ Xj‘Þ � 1

2 ¼
Ð
F0ðxÞ dFjðxÞ � 1

2 ; k 6¼ ‘ :

(3.2)

Note that by comparing two independent subjects, this measure reduces the
comparison between occasion j with the baseline in terms of the respective mar-
ginal distributions. In Section 3.2 we derive multiple rank tests on the wj.

Remark 1: Define GjðxÞ ¼ 0:5 F0ðxÞ þ FjðxÞ
� �

: Then wj ¼ E GjðXjkÞ � GjðX0kÞ
� �

.
Thus Gj may be thought of as an unknown link function or transformation which
results in a linear scale on which Xjk and X0k can be compared. The above equa-
tion can also be expressed as

wj ¼ 1
2 E F0ðXjkÞ � FjðX0kÞ

� �
; j ¼ 1; . . . ; b : ð3:3Þ

We use these alternative representations of wj in the sequel.

3.1 Multiple Sign Tests and Confidence Intervals

Consider the family of two-sided hypothesis testing problems:

H0j : qj ¼ 0 vs. H1j : qj 6¼ 0 ; j ¼ 1; . . . ; b : ð3:4Þ

&
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Let Yjk ¼ 1; 1=2 or 0 according as X0k <;¼ or > Xjk. Then an unbiased estimate
of qj is given by

q̂qj ¼ Yj� �
1

2
¼ 1

n

Pn
k¼1

Yjk �
1

2
¼ 1

n
Nþ
j þ 1

2
N0
j

� �
� 1

2
;

where Nþ
j ¼ ]fkjX0k < Xjkg and N0

j ¼ ]fkjX0k ¼ Xjkg. The standardized test statis-
tics

Zj ¼
ðYj� � 1=2Þ

ffiffiffi
n

p
ffiffiffî
ss

p
jj

; j ¼ 1; . . . ; b ð3:5Þ

are asymptotically standard normal under H0j of (3.4) where ŝsjj is a consistent
estimate of sjj ¼ Var ðYjkÞ. Let sij denote Cov ðYik; YjkÞ (which equals Var ðYjkÞ
for i ¼ j). Since the Yjk for k ¼ 1; 2; . . . ; n are i.i.d., the sij and correlations qij are
consistently estimated by

ŝsij ¼
1

n� 1

Pn
k¼1

Yik � Yi�
� �

ðYjk � Yj�Þ and q̂qij ¼
ŝsijffiffiffiffiffiffiffiffiffiffi
ŝsiiŝsjj

p : ð3:6Þ

The testing family fðH0j;ZjÞ ; j ¼ 1; . . . ; bg is joint (Gabriel, 1969). By using the
union-intersection method (see Hochberg and Tamhane, 1987, p. 28), a multiple
test procedure that strongly controls the FWE asymptotically at level a for the
family of hypotheses (3.4) is given by:

Reject H0j : qj ¼ 0 if jZjj > jzjb; fq̂qijg;a ; j ¼ 1; . . . ; b ;

where jzjb ;fq̂qijg;a is the two-sided upper a equicoordinate critical point of the b-

variate standard normal distribution (with zero means and unit variances) and cor-
relation matrix fq̂qijg. The corresponding 100ð1� aÞ% simultaneous confidence
intervals (SCI’s) on the qj are given by

qj 2 ½q̂qj � jzjb; fq̂qijg;a
ffiffiffî
ss

p
jj=n� ; j ¼ 1; . . . ; b :

Extensions to one-sided hypotheses and SCI’s are straightforward.

Remark 2: The above method of deriving a multiple test procedure by first
obtaining the test statistics Zj that form a joint testing family fðH0j; ZjÞg and then
using the union- intersection method to find the common critical point from the
asymptotic multivariate normal (MVN) distribution of the Zj is used in all of the
problems discussed in the remainder of the paper. Therefore these technical details
are not always mentioned. Also, note that it is possible to derive more powerful
stepwise testing procedures if SCI’s are not required.

Remark 3: The statistic (3.5) is a paired t-statistic where each paired difference,
Xjk � X0k, is coded as 1, 1/2 or 0 as explained above. This suggests that, espe-
cially for small n, the joint distribution of the Zj under the overall null hypothesis
may be better approximated by a b-variate t-distribution. In fact, the critical point

&

Biometrical Journal 44 (2002) 6 767



jzjb; fq̂qijg;a gives a slightly anti-conservative test. So we suggest that it be replaced

by the two-sided upper a equicoordinate critical point jtjb; n�1; fq̂qijg;a from the b-vari-

ate t-distribution with n� 1 degrees of freedom (d.f.). This critical point can be
calculated by using the SAS-IML program of Genz and Bretz (1999) (available at
www.bioinf.uni-hannover.de). It should be noted that the multivariate t-distri-
bution assumes a common estimate of variance for all statistics, whereas here we
have different estimates that are correlated. However, we do take this into account by
not pooling the d.f. The superiority of the t-approximation in accurately controlling
the FWE was confirmed in the simulation studies. The same type of approxima-
tion is used in all of the problems discussed in the remainder of the paper.

3.2 Multiple Rank Tests and Confidence Intervals

Consider the family of two-sided hypothesis testing problems:

H0j : wj ¼ 0 vs. H1j : wj 6¼ 0 ; j ¼ 1; . . . ; b: ð3:7Þ

A natural estimate of wj is obtained as follows. Let F̂Fj denote the empirical nor-
malized c.d.f.’s for j ¼ 0; 1; . . . ; b. Then from (3.3) we have

ŵwj ¼
1

2n

Pn
k¼1

½F̂F0ðXjkÞ � F̂FjðX0kÞ�: ð3:8Þ

Now,

F̂F0ðXjkÞ ¼
1

n
½Rð0jÞ

jk � R
ðjÞ
jk � and F̂FjðX0kÞ ¼

1

n
½Rð0jÞ

0k � R
ð0Þ
0k � ;

where R
ð0jÞ
0k and R

ð0jÞ
jk denote the midranks of X0k and Xjk in the joint ranking of

the baseline and the occasion j samples together, and R
ð0Þ
0k and R

ðjÞ
jk denote the

midranks of X0k and Xjk in their respective internal rankings, i.e., within the

baseline and the occasion j samples separately. Let �RR
ð0jÞ
0� ¼ n�1

Pn
k¼1

R
ð0jÞ
0k and

�RR
ð0jÞ
j� ¼ n�1

Pn
k¼1

R
ð0jÞ
jk be the sample means of the midranks. Then it is easy to verify

that (3.8) reduces to

ŵwj ¼
1

2n
ðRð0jÞ

j� � R
ð0jÞ
0� Þ: ð3:9Þ

Notice that the internal ranks cancel out in the calculation of this estimate; how-
ever, they appear in the formulas for the estimates of the variances and covar-
iances. The estimate ŵwj is asymptotically unbiased and consistent (Brunner, Puri
and Sun, 1995).
To obtain the asymptotic joint distribution of the ŵwj, define

Yjk¼F0ðXjkÞ�FjðX0kÞ

&
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and

ŶYjk¼ F̂F0ðXjkÞ�F̂FjðX0kÞ ¼
1

n
½Rð0jÞ

jk �RðjÞ
jk �Rð0jÞ

0k þRð0Þ
0k � :

Then from (3.8) we have

ŵwj ¼
1

2
ŶYj� ¼

1

2n

Pn
k¼1

ŶYjk : ð3:10Þ

Note that ŶYj� is the sample mean of ŶYjk, which are not independent. However,
using methods similar to those in Brunner, Puri, and Sun (1995), we can show
that ffiffiffi

n
p

jjŶYj� � Yj�jj2 ! 0 ; j ¼ 1; . . . ; b

in the L2-norm, where �YYj� is the sample mean of the Yjk, which are i.i.d. Since
componentwise convergence implies multivariate convergence in finite dimensions,
it follows that

ffiffiffi
n

p
jjðŶY1�; . . . ; ŶYb�Þ � ðY1�; . . . ; Yb�Þjj2 ! 0 :

By the multivariate central limit theorem (Gnedenko, 1962), ð �YY1�; . . . ; �YYb�Þ is

asymptotically MVN. Hence ðŶY1�; . . . ; ŶYb�Þ has the same asymptotic MVN distri-
bution with

EðŶYj�Þ �! E Yj�
� �

¼ 2wj ; j ¼ 1; . . . ; b;

n Cov ðŶYi�; ŶYj�Þ �! n Cov ðYi�; Yj�Þ ¼ Cov ðYik; YjkÞ ¼ sij ; i; j ¼ 1; . . . ; b:

The sij can be consistently estimated by the corresponding sample variances
(for i ¼ j) and covariances (for i 6¼ j) among the Yik and Yjk. But since the latter
are unobservable, we use the corresponding sample quantities, ŶYik and ŶYjk, respec-
tively, resulting in the following estimates:

ŝsij ¼
1

n� 1

Pn
k¼1

ðŶYik � ŶYi�Þ ðŶYjk � ŶYj�Þ

¼ 1

2nðn� 1Þ
Pn
k¼1

fRð0iÞ
ik � R

ðiÞ
ik � R

ð0iÞ
0k þ R

ð0Þ
0k � ðRð0iÞ

i� � R
ð0iÞ
0� Þg

� fRð0jÞ
jk � R

ðjÞ
jk � R

ð0jÞ
0k þ R

ð0Þ
0k � ðRð0jÞ

j� � R
ð0jÞ
0� Þg: ð3:11Þ

These estimates can be shown to be consistent by using the techniques of Brun-
ner, Puri, and Sun (1995). Therefore,

Zj ¼
ŵwj

ffiffiffiffiffi
4n

p
ffiffiffiffiffi
ŝjjsjj

p ¼
R
ð0jÞ
j� � R

ð0jÞ
0�

� 	 ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

r Pn
k¼1

fRð0jÞ
jk � R

ðjÞ
jk � R

ð0jÞ
0k þ R

ð0Þ
0k � ðRð0jÞ

j� � R
ð0jÞ
0� Þg2

;

j ¼ 1; . . . ; b ;
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are asymptotically standard normal under the respective hypotheses H0j : wj ¼ 0.
The correlation matrix of the Zj can be consistently estimated by fq̂qijg in the usual
manner. As before, a multiple test procedure that strongly controls the FWE
asymptotically at level a for the family of hypothesis testing problems (3.7) is
given by:

Reject H0j : wj ¼ 0 if jZjj > jzjb; fq̂qijg;a ; j ¼ 1; . . . ; b :

The corresponding 100ð1� aÞ% simultaneous two-sided confidence intervals on
the wj are given by

wj 2 ½ŵwj � jzjb; fq̂qijg;a
ffiffiffiffiffiffiffiffiffiffiffiffi
ŝsjj=4n

q
� ; j ¼ 1; . . . ; b :

In analogy with Remark 2, we recommend the use of the multivariate t critical
point jtjb; n�1; fq̂qijg;a in place of jzjb; fq̂qijg;a.

4. Two Treatments

In this case, one of the questions of interest is whether the time effects are differ-
ent for the two treatment groups. This can be formulated as a test of hypothesis of
no treatment� time interaction. The multiple sign and rank tests of the previous
section can be extended to the two treatment setting. For example, for the multiple
sign test we can take the interaction effect for occasion j as q1j � q2j where qij is
the effect of treatment i at time j w.r.t. the baseline as defined in (3.1). Similarly,
for the multiple rank test we can take the interaction effect for occasion j as
w1j � w2j where wij is the effect of treatment i at time j w.r.t. the baseline as
defined in (3.2). The estimates of these interaction effects and their asymptotic
distributions can be derived in a straightforward manner. We omit the details for
brevity.
The multiple rank test faces a difficulty arising because it ranks observations

within each treatment separately (but jointly over the occasion j and baseline).
This is a result of the fact that the measures wij are defined separately for each
treatment i ¼ 1; 2. An undesirable consequence of this separate ranking is that a
large quantitative interaction (i.e., the time effects in both treatments are in the
same direction, but are of different magnitudes) is likely to go undetected. As a
simple example, suppose we have two observations from each treatment at the
baseline and occasion 1: X11 ¼ ð1; 3Þ; X12 ¼ ð2; 4Þ; X21 ¼ ð5; 15Þ; X22 ¼ ð6; 16Þ.
Then X11� � X10� ¼ 2 and X21� � X20� ¼ 10. This is a quantitative interaction.
Unfortunately, since the ranks are assigned separately for each treatment, we
get identical joint ranks for the two subjects in each treatment group:

R
ð01Þ
101 ¼ R

ð01Þ
201 ¼ 1, Rð01Þ

102 ¼ R
ð01Þ
202 ¼ 2, Rð01Þ

111 ¼ R
ð01Þ
211 ¼ 3, Rð01Þ

112 ¼ R
ð01Þ
212 ¼ 4: Their in-

ternal ranks are also identical: Rð0Þ
101 ¼ Rð0Þ

201 ¼ 1, Rð0Þ
102 ¼ Rð0Þ

202 ¼ 2, Rð1Þ
111 ¼ Rð1Þ

211 ¼ 1,

Rð1Þ
112 ¼ Rð1Þ

212 ¼ 2: As a result, ŵw11 � ŵw21 ¼ 0 (the corresponding variance estimate
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is also zero) and the interaction will go undetected. The same difficulty occurs
with the multiple sign test on q1j � q2j. However, other types of interactions (e.g.,
quantitative interactions with small time effects in both treatments or qualitative
interactions) are detectable using these two tests.
To avoid the above problem, we need to assign ranks jointly over the two occa-

sions as well as over the two treatments (called overall ranking). Rank statistics
based on overall ranks result naturally if we define the effect of treatment i at
occasion j w.r.t. the baseline as

fij ¼ E½GjðXijkÞ � GjðXi0kÞ� ¼
Ð
GjðxÞ dFijðxÞ �

Ð
GjðxÞ dFi0ðxÞ ;

i ¼ 1; 2 ; j ¼ 1; 2; . . . ; b ;

where Gj ¼ N�1½n1ðF10 þ F1jÞ þ n2ðF20 þ F2jÞ� is a weighted average of all four
distributions and N ¼ 2ðn1 þ n2Þ denotes the total number of all observations.
Consider the hypothesis testing problem:

H0j : f1j � f2j ¼ 0 vs: H1j : f1j � f2j 6¼ 0 ; j ¼ 1; . . . ; b : ð4:1Þ

Note that H0j is implied by the stricter null hypothesis HF
0j:

F1j � F10 � F2j þ F20 ¼ 0. This latter null hypothesis was considered by Akritas

and Brunner (1997). Their test is based on the same transformation Gj above.
A natural estimate of fij is given by

f̂fij ¼
ð
ĜGj dF̂Fij �

ð
ĜGj dF̂Fi0 ¼

1

N
ðRð0jÞ

ij� � R
ð0jÞ
i0� Þ ;

where Rð0jÞ
i‘k , ‘ ¼ 0; j denotes the overall rank of Xð0jÞ

i‘k among all observations at
time j and baseline in both groups. Using arguments similar to those in Akritas

and Brunner (1997) it can be shown that
ffiffiffiffi
N

p
ðf̂f1j � f̂f2jÞ is asymptotically

equivalent to
ffiffiffiffi
N

p
Yj; 1j� � Yj; 10� � Yj; 2j� þ Yj; 20�
� �

under the null hypothesis HF
0j,

where Yj; i‘k ¼ GjðXi‘kÞ and Yj; i‘� ¼ n�1
i

Pni
k¼1

Yj; i‘k, ‘ ¼ 0; j: For every nonempty

subset J � f1; 2; . . . ; bg, the asymptotic multivariate normality offfiffiffiffi
N

p
ðf̂f1j � f̂f2jÞ; j 2 J under

T
j2 J

HF
0j follows from the application of the multi-

variate central limit theorem.
If sjj0 denotes the asymptotic covariance between

ffiffiffiffi
N

p
ðf̂f1j � f̂f2jÞ andffiffiffiffi

N
p

ðf̂f1j0 � f̂f2j0 Þ then the abovementioned asymptotic equivalence implies that

sjj0 ¼ Nðs1; jj0=n1 þ s2; jj0=n2Þ ;

where si; jj0 ¼ CovðYj; ijk � Yj; i0k; Yj0; ij0k � Yj0; i0kÞ. Again, the Yj; i‘k are not observable
and hence we use their empirical counterparts

ŶYj; i‘k ¼ ĜGjðXi‘kÞ ¼
1

N
R
ð0jÞ
i‘k � 1

2


 �
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to obtain consistent estimates of the variances and covariances. Under HF
0j \ HF

0j0

we obtain a consistent estimate of sjj0 by

ŝsjj0 ¼ Nðŝs1; jj0=n1 þ ŝs2; jj0=n2Þ;

where

ŝsi; jj0 ¼
N

ni � 1

Pni
k¼1

ðŶYj; ijk � ŶYj; i0k � ŶYj; ij� þ ŶYj; i0�Þ ðŶYj0; ij0k � ŶYj0; i0k � ŶYj0; ij0� þ ŶYj0; i0�Þ

¼ 1

Nðni � 1Þ
Pni
k¼1

ðRð0jÞ
ijk � Rð0jÞ

i0k � R
ð0jÞ
ij� þ R

ð0jÞ
i0� Þ ðR

ð0j0Þ
ij0k � Rð0j0Þ

i0k � R
ð0j0Þ
ij0� þ R

ð0j0Þ
i0� Þ :

The test statistics

Zj ¼
f̂f1j � f̂f2jffiffiffiffiffi

ŝsjj
p ; j ¼ 1; 2; . . . ; b

are asymptotically standard normal under HF
0j. The correlation matrix of the Zj is

consistently estimated by fq̂qjj0g in the usual manner. Multiple tests of the hypoth-
eses (4.1) can be based on these statistics with strong FWE control as discussed
before.
SCI’s cannot be computed for f1j � f2j because the variance and covariance

estimates are consistent only under the corresponding null hypotheses HF
0j \ HF

0j0 .
Moreover, note that the test statistics are based on the effects f1j and not consis-
tent against alternatives in H0jnHF

0j (Brunner, Munzel and Puri, 1999). Solutions
of this problem for the independent case (e.g. see Cohen et al., 2000) cannot be
easily extended to repeated measures.

5. Simulations

We carried out extensive simulations to study the FWE and power properties of
the multiple sign and rank tests for a single treatment proposed in Section 3. The
normal theory multiple paired t-test with empirically estimated covariance matrix
was included in the simulation study as a benchmark for comparison.
Two values of b were considered: b ¼ 3 and b ¼ 7. Four different ðbþ 1Þ-vari-

ate distributions were simulated: 1) Multivariate normal (MVN), 2) rounded multi-
variate normal (RMVN) as an example of a discrete distribution, 3) multivariate
lognormal (MVLN) as an example of a skewed distribution, 4) multivariate Cau-
chy (MVCAUCHY) as an example of a heavy-tailed distribution.
MVN observations with zero means and unit variances were generated with

two different correlation structures: 1.) Autocorrelation structure having
Corr ðXik;XjkÞ ¼ qji�jj with autocorrelation coefficient q ¼ 0:5, 2.) compound sym-
metry structure with Corr ðXik;XjkÞ ¼ q ¼ 0:5 for all i 6¼ j. The latter structure
arises from a random subject effects model. Specifically, if Xjk ¼ sk þ ejk, where
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the sk are i.i.d. Nð0; s2s Þ subject effects and the ejk are i.i.d. Nð0; s2eÞ random errors
then the common correlation q ¼ s2s=ðs2s þ s2eÞ. Because the simulation results
were similar in both cases, only the results for the autocorrelated data are reported
here.
Five different sample sizes were studied: n ¼ 10; 15; 20; 30 and 50. A nominal

a level of 5% was used throughout. The multivariate t critical point approxima-
tions were used for all tests. The estimated correlation matrix fq̂qijg among the test
statistics was used to determine the multivariate t critical points for b ¼ 3 using
the Genz and Bretz (1999) algorithm. For b ¼ 7, this algorithm is too slow.
Therefore we used an approximation obtained by replacing the q̂qij by a common
correlation q̂q, equal to their arithmetic average. This approximation is known to be
slightly conservative in case of the normal distribution (Hochberg and Tamhane,
1987, p. 146). It was calculated using the SAS PROBMC procedure.
The FWE simulations were conducted under the overall null hypothesis

H0 : F0 ¼ F1 ¼ � � � ¼ Fb, i.e., when all marginal distributions are identical. From
Gabriel (1969, Theorem 2), it follows that the FWE is maximized under this
configuration if the multiple test procedure is a UI procedure based on a joint
testing family, which is the case here. The simulation results are summarized in
Table 2. We see that the multiple t-test controls the FWE quite accurately for
MVN and RMVN data, but is overly conservative for MVLN and MVCAUCHY
data. The multiple sign test controls the FWE reasonably well for n � 30, but for
smaller n, its FWE values are highly variable ranging from as low as 2.6% to as
high as 9.2%. The multiple rank test controls the FWE quite well in most cases
for n � 20, but for smaller n, its FWE is as high as 6.9%.
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Table 2

Empirical Type I Familywise Error Rates of Multiple t, Sign and Rank Tests (a ¼ 5%Þ

Distribution n b ¼ 3 b ¼ 7

t-Test Sign Rank t-Test Sign Rank
Test Test Test Test

MVN 15 5.5 4.8 4.8 5.6 9.2 5.7
20 4.8 5.1 4.6 5.1 3.9 5.2
30 5.4 5.7 5.1 5.2 4.6 5.1

RMVN 15 5.6 5.7 5.5 5.6 6.1 6.0
20 5.4 5.4 5.3 5.2 6.1 5.6
30 5.0 5.1 5.2 5.1 5.5 5.4

MVLN 15 3.3 4.8 5.2 2.5 9.1 5.5
20 3.0 5.5 4.8 2.4 3.9 5.4
30 3.3 5.5 4.8 2.7 4.8 5.5

MVCAUCHY 15 2.0 4.7 5.7 1.2 9.3 6.2
20 2.0 5.8 5.5 1.1 3.7 5.3
30 2.1 5.9 5.5 1.3 4.9 5.4



The powers of the three tests were simulated for MVN and MVLN data for
n ¼ 30 under location alternatives. It should be noted that for location models
there is a one-to-one relationship between the effects qj and wj on the one hand
and the location shift on the other hand. Location shifts were created by adding a
quantity equal to dj=b to the jth time point (j ¼ 0; 1; . . . ; b) for selected values of
d > 0. This creates a linear shift w.r.t. time. The resulting power curves for the
three tests are shown in Figure 2 for MVN data and in Figure 3 for MVLN data.
Figure 2 shows that for MVN data the multiple rank test is only slightly less

powerful than the multiple t-test, while the multiple sign test is markedly less
powerful. For MVLN data, however, the rank test is markedly more powerful than
the t-test, which is even less powerful than the sign test. Hence we can conclude
that the possible loss of power of the rank test w.r.t. the t-test is only small for
MVN data, whereas the possible gain can be quite large. The sign test is less
powerful than the rank test in general.
For two treatments we compare the multiple interaction tests proposed in Sec-

tion 4, i.e., the multiple sign test, the test based on different joint and internal
ranks in each group and the test based on overall ranks as given in Section 4. A
parametric multiple t-test procedure was also included in the simulations. This
procedure was based on the interactions ðX1j� � X10�Þ � ðX2j� � X20�Þ. The covar-
iances of these interactions were estimated by the corresponding sample covar-
iances. The critical points for all tests were taken from multivariate t-distributions
with n1 þ n2 � 2 d.f. and appropriately estimated correlation matrices.
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Fig. 2. Power of the Multiple Sign Test, Multiple Rank Test and Multiple Paired t-Test for Multivariate
Normal Data and bþ 1 ¼ 4 Time Points
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Fig. 3. Power of the Multiple Sign Test, Multiple Rank Test and Multiple Paired t-Test for Multivariate
Lognormal Data and bþ 1 ¼ 4 Time Points

Table 3

Empirical Type I Familywise Error Rates of the Multiple Interaction Tests for b ¼ 7 Time
Points (a ¼ 5%Þ

Distribution n1 ¼ n2 Low Time Effect High Time Effect

t-Test Sign Joint Overall t-Test Sign Joint Overall
Test Rank Rank Test Rank Rank

Test Test Test Test

MVN 15 4.9 5.4 4.6 5.1 5.3 0.9 1.0 4.9
20 4.8 5.1 4.4 4.7 4.8 0.4 0.9 4.6
30 4.8 5.2 4.7 4.9 4.9 0.7 1.0 4.3

RMVN 15 4.7 4.9 4.8 4.7 4.9 0.7 1.0 4.3
20 4.9 5.2 5.0 5.1 4.9 0.6 1.1 4.4
30 5.2 5.0 4.9 5.0 4.9 1.1 1.4 4.6

MVLN 15 3.4 4.9 4.1 4.5 3.4 1.0 1.7 4.7
20 3.9 5.4 4.5 4.5 3.9 1.3 1.9 4.7
30 3.7 5.1 4.4 4.5 4.3 2.3 2.7 4.8

MVCAUCHY 15 1.2 4.8 5.1 5.5 1.4 3.5 4.2 5.1
20 1.3 4.9 5.4 5.5 1.2 4.2 4.2 5.0
30 1.2 5.0 5.5 5.6 1.2 4.1 4.9 4.9



The same distributions as for the single treament simulations were used to gen-
erate the data. Location shifts were created by adding 0:5þ jd=b to each observa-
tion from Group 1 and jd=b to each observation from Group 2 (so that there is a
constant group effect of 0.5, and hence there is no treatment�time interaction)
where d ¼ 1 represented a low time effect and d ¼ b represented a high time
effect. The simulated type I FWE’s for these two situations are displayed in Ta-
ble 3. The results show that the sign test and the joint rank test maintain a quite
accurately even for small sample sizes ðni � 10Þ for a low time effect, but are
very conservative for a high time effect. The parametric t-test is slightly conserva-
tive for MVLN and very conservative for MVCAUCHY data. Only the overall
rank test is robust against different distributions and low or high time effects.
Comparing the power of the overall rank test and the t-test shows that the t-test

is slightly more efficient if the differences Xijk � Xi0k have a symmetrical distribu-
tion whereas the rank test is much more powerful if the distribution is heavy-tailed
or skew. The resulting power curves are comparable to those in the single treat-
ment situation and therefore are not displayed.

6. Example

Let us return to the questions stated in the Introduction and answer them using the
proposed tests. For each test we use a ¼ :05. The sample size of 15 per group is
slightly on the low side for asymptotics to work, but the rank tests used below
perform satisfactorily as seen in the simulation study. (The highest FWE of the
rank test in the single treatment case for b ¼ 7 and n ¼ 15 is 6.2% and the high-
est FWE of the overall rank test in the two treatment case for b ¼ 7 and n ¼ 15 is
5.1%. Both these are for MVCAUCHY data.)
To answer Question 1 in the Introduction we computed the rank test statis-

tics (3.2) and their two-sided p-values using the multivariate t approximation. The
results are shown in Table 4. We see that the drug shows a significant effect rela-
tive to the baseline beginning with week 3. Note that when comparing week 10
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Table 4

Rank Test Statistics and Associated p-Values for Answering Research Questions in Panic
Disorder Psychiatric Study

Question Week 1 2 3 4 6 8 10

1 Z 0.952 2.698 5.294 8.880 9.457 10.980 –
p 0.869 0.087 <0.001 <0.001 <0.001 <0.001 <0.001

2 Z 1.390 0.646 2.084 2.281 1.808 0.866 0.196
p 0.636 0.976 0.256 0.186 0.385 0.918 >0.999

3 Z 0.362 2.046 3.614 3.463 5.247 6.750 7.499
p 0.998 0.231 0.007 0.010 <0.001 <0.001 <0.001



with baseline, the empirical distributions of the data for the two time points are
disjoint. In that case the variance estimate of the rank statistic equals 0 and hence
the Z-statistic cannot be computed. However, it is clear that the difference is
highly significant in that case.
To answer Question 2 we apply the same test used to answer Question 1 to the

placebo group. The results are shown in Table 4. We see that there is no signifi-
cant placebo effect at any time.
To answer Question 3 we apply the multiple test for treatment�time interaction

based on overall ranks. The results are shown in Table 4. We see that the active
drug has a significant effect relative to the placebo beginning week 3.
Note that for the given example more powerful tests could be derived by using

stepwise methods. For example a closure test could be applied to compare the
time points to baseline successively beginning from the last. This method is rea-
sonable if a monotone time effect can be assumed. However, it does not offer the
possibility to compute simultaneous confidence intervals and it is rather non-ro-
bust if the assumption is not fulfilled. For example a time dependent placebo
effect may result in an umbrella alternative that could not be detected.

7. Discussion

In this paper we have given nonparametric MCP’s to compare time effects w.r.t.
the baseline for a single treatment or two treatments. Although the approach does
not offer a general solution to deal with repeated measures (for different objectives
see, e.g., Reiczigel, 1999 or Keselman et al., 2001), it can easily be extended to
some other MCP’s, e.g., multiple comparisons between successive time points.
Missing values are not considered. However, the results could be extended to

values missing completely at random by using the methods of Brunner, Munzel

and Puri (1999), who among others generalized the approach of Akritas and
Brunner (1997). Other nonparametric approaches to missing values (e.g., see Da-

vis, 1991) compare the multivariate cdf’s or are based on linear forms of the
dependent components.
All results derived throughout the paper are asymptotic and the MCP’s cannot

be used with small sample sizes. The accuracy of the approximation depends on
the sample sizes and the number of time points. Moreover, the accuracy of the
approximation is affected slightly by the number of ties. Exact nonparametric tests
or resampling methods are known only for independent observations. Therefore,
several authors use linear forms (e.g. see Davis, 1991) or summary statistics (e.g.
Weinberg and Lagakos, 2001) to condense the repeated measures.
As in the parametric theory, however, summary statistics as well as linear forms

or multivariate tests do not offer the opportunity to distinguish between the treat-
ment effects, time effects and interactions. This implies that they could not be
used, e.g., to answer the Questions 1–3. in the Introduction. Moreover many of
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the standard summary statistics cannot be applied to ordinal data (AUC, maximum
change). Thus, new methodology as proposed in this paper is required.
Note that all tests are based on the asymoptotic rank transform (ART) method.

The ARTs are known to have heterogenous variances and covariances even if the
original observations are homogenous. Consequently all proposed methods are
appropriate for homogenous as well as for heterogenous situations.
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